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INTRODUCTION 

Ventricular fibrillation (VF) is a state of disorganized, ineffective contraction of 
the heart’s two main pumping chambers. Ventricular fibrillation has traditionally been 
described as “turbulent” and chaotic,’ and in recent years there has been speculation 
that fibrillation may be an instance of deterministic chaos in the context of nonlinear 
dynamical systems theory. 

The idea that fibrillation is chaos has received indirect support both from mathemat- 
ical models and experimental observations. A simple deterministic24 model of cardiac 
electrical activity displays fibrillation-like activity. This suggests that the seeming 
randomness of fibrillation may arise from a deterministic dynamical system. 

Experiments oriented toward investigating the transition from a normal heart 
rhythm to fibrillation have shown that there is a correlation between decreased 
electrical stability of the heart and a “period doubling” in cardiac r h ~ t h m . ~  The 
experiments begin with the heart in an approximately periodic rhythm. The changes in 
this rhythm are observed as a parameter of the system-such as temperature-is 
changed. At several points in the experiment, the stability of the pattern of electrical 
activity in the heart is probed by applying a series of electrical perturbations to the 
heart. The amount of electrical current needed to induce VF is taken as a measure of 
electrical stability: the greater the required current, the greater the stability. 

It is tempting to see such experiments as analogous to numerical “experiments” in 
which a parameter of a dynamical system is gradually changed, and the resulting 
bifurcation behavior is observed. One widely observed route to chaos in such numerical 
experiments is a cascade of period doublings that turn a periodic system into an 
aperiodic and chaotic one. 

Although the observed doubling in the period of the heart’s rhythm may be such a 
period doubling on the way to chaos, the analogy between the cardiac electrical 
instability experiments and the numerical experiments is not perfect. In particular, the 
type of stability tested in the cardiac experiments has to do with the proximity of 
different basins of attraction, and not the pitchfork bifurcations associated with the 
period-doubling route to chaos6.’ 

‘This work was supported by NASA Grant NAGW-988 and a grant from the Whitaker 
Foundation. 
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MAKING A DYNAMICAL SYSTEMS REPRESENTATION 
OF FIBRILLATION 

In  order to test directly the idea that fibrillation is chaos, we sought to construct a 
dynamical system capable of representing the surface electrocardiographic (ECG) 
data collected during fibrillation. This dynamical system can be tested for the 
attributes of chaos, such as the existence of an attractor and sensitive dependence on 
initial conditions. 

The general approach in constructing such a representation is to embed the ECG 
signal in a space using the method of lags.' In the method of lags, a scalar signal s( t )  is 

Paced  A t r i a l  R h y t h m  
I 

-: Fibril  l a  t i  on 

FIGURE 1. State-space reconstructions of 3-lead ECGs from an atrially paced rhythm and from 
fibrillation. A projection of the trajectory onto two dimensions is shown. The trajectory plotted 
covers 5 s, while the black dots indicate the trajectory during a short subsection of that period. 

used to generate an m-dimensional vector s ( t )  ( s ( t ) ,  s(t - T ) ,  s ( t  - 27), . . . , 
s(t - ( m  - l ) ~ ) ) ,  where T is a lag time chosen by the researcher. (The method can be 
easily applied as well to vector signals ( s , ( t ) ,  s2(t). . . . , s , ( t ) ) . )  In the m-dimensional 
space, this vector parameterized by time constitutes a trajectory. 

The rn-dimensional space can be considered a putative state-space, and the 
trajectory tested to see if it is consistent with a deterministic flow in that state-space. 

Any trajectory is consistent with a deterministic flow if the trajectory does not cross 
itself. For m 2 3,  however, one cannot expect any finite length of trajectory actually to 
cross itself. In general, the larger m is, the larger the length of signal needed to produce 
a crossing. If the system is not deterministic, there will be near-crossings where two 
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branches of the trajectory are approximately orthogonal. The length scale that 
determines what constitutes a “near”-crossing is that imposed by the noise in the 
experimental system. 

FIGURE 1 shows a two-dimensional projection of a 21-dimensional embedding of 
three-lead ECGs from a paced atrial rhythm and fibrillation. The trajectory of the 
paced atrial rhythm is ring-shaped, corresponding to the regular, periodic ECG. The 
ring is thick-its thickness is produced by noisy dynamics of the system a t  short length 
scales. Not all the dynamics a t  the short length scales, however, are due to noise. In this 
particular case, recorded a few seconds before the onset of fibrillation, the ring is split 
down the middle, and the trajectory alternately courses through one side and then the 
other of the split. This alternation is the state-space manifestation of a doubled period 
in the ECG. 

In contrast, fibrillation appears to be a tangled knot. The trajectory is crossing itself 
in many places in this two-dimensional projection. It is not clear that there is a length 
scale that separates the noisy dynamics from the deterministic ones. This two- 
dimensional plot may not, however, accurately represent the situation in the full 
21-dimensional space. In that larger space, the dynamics may be untangled. 

USING THE DIMENSION TO MONITOR THE 
UNTANGLING OF DYNAMICS 

Since the trajectory is a geometrical object, its dimension can be calculated. The 
dimension of the trajectory allows us to investigate the existence of near-crossings 
without resorting to plots of the sort in FIGURE 1. The method is as follows. Embed the 
signal in a putative state-space. Calculate the dimension of the trajectory. Embed the 
signal in a somewhat larger dimensional putative state-space. Again, calculate the 
dimension of the trajectory in the larger dimensional state-space. Continue this process 
until the calculated dimension is independent of the embedding dimension. 

So long as the trajectory looks like a tangled knot, the trajectory’s dimension will 
increase with the dimension of the embedding space. When there are near-crossings 
that are approximately orthogonal, the larger dimensional embedding will tend to 
separate the two branches of the trajectory involved in the crossing. When this 
“untangling” is complete, the trajectory’s dimension will stop increasing with embed- 
ding dimension. 

When the dimension stops increasing with embedding dimension, we can be 
satisfied that there are no approximately orthogonal crossings left in the trajectory, and 
that we have a deterministic state-space representation of the signal from which we 
created the trajectory. 

Unfortunately, for any finite-length signal, there is some embedding that will 
untangle the trajectory. In order to be assured that the success of the embedding is due 
to the deterministic dynamics of the system that generated the trajectory, and not due 
to the finite length of the signal, we need to compare the dimension of the signal of 
interest to the dimension of a random, but similar signal of the same length. 

It is unclear what is the best definition of “similar” for this purpose. In our work, we 
have taken two signals to be similar when they have the same power spectrum. It is 
possible to generate a random signal with an identical power spectrum to a signal of 
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interest by randomizing the phases in the Fourier representation of the signal. That is, 
our random signal generator consists of taking the FFT of the signal of interest, 
randomizing the phases uniformly over the interval [--a, 7r3, and taking the inverse 
FFT. 

The most widely used technique for calculating dimensions is the Grassberger- 
Procaccia method,’ which considers how the number of pairs of points closer than a 
certain distance changes with that distance. That is, let C(1) be the number of pairs of 
points in the trajectory closer together than 1. The Grassberger-Procaccia dimension is 

d log C(1) 
d log I vgp(l) = 

Another possible method for calculating dimension is the “box-counting” method, 
which covers the trajectory with hypercubes. Let N(1) be the smallest number of 
m-dimensional hypercubes needed to cover completely the trajectory embedded in a 
m-dimensional space. The dimension is 

d log N(1) 
dlog 1 ’ 

VbC(f) = 

A G-P Dimension 
‘1 T 1 

FIGURE 2. The calculated dimension, u of a trajectory based on a signal derived from the Lorenz 
equations, and a randomized version of the signal. The difference between Y for the two signals is 
also shown. The error bars reflect the uncertainty in the estimate of the dimension, for which 8000 
points were used (1000 are shown in the figure). Although the power spectra of the Lorenz signal 
and the randomized signal are identical, the signals have very different appearances. 
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I Fibril l a t i o n  

FIGURE 3. The calculated dimension of the trajectory of a fibrillatory ECG and a random signal 
with the same power spectrum as the ECG. The original signal and the randomized version are 
qualitatively similar. The dimension calculations bear this out: there is little difference between 
the dimension of the random signal and that of the fibrillation signal. 

The two methods generally give similar results; vgp has been preferred because of the 
computational efficiency of its calculation. Recently, however, the box-counting method 
has been given a computer-efficient formulation by Liebovitch and Toth." Although 
we used vgp in our work, the box-counting method may prove superior, since vgp is 
strongly affected by the finite extent of the object whose dimension is being calculated. 

Both vgp and ubc give dimension as a function of length scale. This is useful, since 
noise is a part of any experimental system, and it is often possible to find a length scale 
that separates noise from the dynamics of interest. The question, however, is still open 
of how to choose a length scale that is representative of a dynamical system. A common 
approach is to look for length scales a t  which the dimension is comparatively indepen- 
dent of length scale, that is, plateaus. 

FIGURE 2 shows a signal generated from the Lorenz equations, as well as a 
randomized version of the same signal. The calculated dimension of the trajectory for 
each of the two signals for different embedding dimensions is shown. For embedding 
dimensions greater than 2, the dimension of the Lorenz attractor is approximately 2. 
The dimension of the trajectory derived from the randomized signal increases with the 
embedding dimension. From this we can see that the finite length of the signal used in 
the calculation does not play a role in the leveling off of the graph of trajectory 
dimension vs. embedding dimension for the Lorenz equations. 
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The situation is different in FIGURE 3, which shows one lead of an ECG from 
fibrillation, and the corresponding randomized signal. The dimension of the fibrillation 
trajectory is not very different from the dimension of the randomized signal. While it is 
clear that the dimension of both signals is asymptotically approaching approximately 
8, this cannot really be taken to mean that the dynamics of fibrillation have an 
eight-dimensional attractor. The saturation of the dimension seems to be due to the 
finite length of the signal used and the limited spectral content of fibrillation. 

IS FIBRILLATION CHAOS? 

To address the question of whether fibrillation is chaos, we applied the technique 
previously outlined to analyze ECGs from ventricular fibrillation in dogs. This section 
summarizes the results presented in reference 1 1 .  The data were collected in a series of 
experiments performed by Smith et al. and reported in reference 5. Four episodes from 
four different dogs were studied. The episodes of VF were uninterrupted by attempts to 
modify or terminate the fibrillation, and the dogs were maintained on mechanical 
respiration during the fibrillation episode, allowing respiratory artifacts to be effec- 
tively eliminated from the signal by high-pass filtering. 

Electrocardiograms were collected from three approximately orthogonal leads, 
recorded first in analog form on FM tape, and then digitized at  1000 Hz after 
appropriate antialiasing filtering. The digitized data were digitally filtered to remove 
respiration artifact with a 1027-point, zero phase-shift filter with cutoff a t  2 Hz. In all 
cases, the spectrum of the unfiltered signal had a large peak a t  respiration frequency 
(usually 0.25 Hz, corresponding to a mechanical respiratory rate of 15 breaths/ 
minute), and very little spectral content between 1 and 4 Hz. 

For each episode of VF, several signal segments were generated from an 8-s-long 
segment starting 1 to 2 s after the change from a tachycardia-like rhythm to 
fibrillation. The segments ranged from 1 to 8 s in length, a t  sampling rates of 62.5 Hz, 
125 Hz, 250 Hz, and 1000 Hz. 

The segments were embedded in a 21-dimensional space using the method of lags, 
for delay time T ranging from 30 to 100 ms. The method of principal components was 
used to select smaller dimensional spaces from the 21-dimensional space. To make an 
n-dimensional putative state-space, the n largest principal components of the cloud of 
points in the 21-dimensional space were selected.'* The dimension of the trajectory was 
calculated using the Grassberger-Procaccia  method.'^'^ The same calculations were 
performed on randomized versions of each of the segments. 

The dimension of the trajectories constructed from the fibrillation signals depended 
on the length of the segments used. For the short, 1-s segments, the dimension 
approached approximately 5 1 as embedding dimension was increased (up to 21). 
For the 8-s-long segments, the dimension approached approximately 8 1. These 
results are consistent with those found by other researchers for human f ibr i l la t i~n. '~  

For segment lengths 2 4  s, no significant difference was found between the 
dimensions of the randomized signals and the fibrillation signals. In three of the four 
cases, this was true also for segments of length 1 and 2 s. In the fourth case, the 
randomized signal did have a significantly larger dimension than the fibrillation signal. 

The inability to distinguish between fibrillation and the randomized signal on the 
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basis of the dimensionality calculations suggests that the finite length of the signals is 
influencing the calculated dimension of fibrillation. The use of longer signals is 
problematic, since the condition of the heart is changing during fibrillation and 
stationarity of the signal cannot be assumed. An analyis of the repetition frequency of 
fibrillation suggests that fibrillation cannot be regarded as stationary for periods much 
longer than 10 s.I5 

CONCLUSIONS 

The first step in testing whether a signal comes from a chaotic system is to construct 
a dynamical systems representation of the signal. That representation can then be 
tested directly for signs of chaos by calculating Lyapunov exponents," or directly 
looking for the existence of a strange attractor or the stretching-and-folding dynamics 
that would lead to one. 

We have been unable to construct a state-space representation of ventricular 
fibrillation that allows us to distinguish between VF and a similar, but random, signal. 
This means that the adequacy of the representation cannot be assured: the observed 
leveling off of dimension with increasing embedding dimension is due to the finite 
length of the signal, and not the existance of any attractor. 

It may be that a t  a higher embedding dimension a significant difference would be 
found between fibrillation and a similar, but random, signal. It might turn out that in a 
high-dimensional embedding space, fibrillation is chaotic. The nonstationarity of 
fibrillation, however, precludes us from sensibly analyzing enough fibrillation data to 
test out this possibility. The possibility also exists that fibrillation is an example of a 
nonstationary transient, and that even if a dynamical system representation of fibrilla- 
tion could be found, fibrillation might not be an attractor, but a transient."." 

Although we cannot prove that fibrillation is not chaos, our results strongly suggest 
that, with the present data, it is not useful to regard fibrillation as chaos. 
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